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ABSTRACT

This report is concerned with the approximation of acoustical noise
fields by the use of modulated pure tone sources. Given a specific random
signal the methods of orthogonal expansion and Fourier expansion are studied.
The integral equation arising from the orthogonal expansion is solved for
the normal functions when: a) the power spectrum is given as the ratio of
two polynomials, b) Markoff Autocorrelation function, c) stationary band
limited Gaussian white noise of mean zero, d) band limited stationary normal
white noise on a finite interval, e) white noise. Deterministic and random
frequency and amplitude modulation and random switching are examined as
ways to broaden spectral components.
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I. Introduction

Deae of the may applications, it is found useful
to represent a random process in a suitable series of
particular functions over som finite or infinite interval.
Considerable study hA been devoted to the problem of
e3qnsions (Rof. lp2,3). Orthogonal expansions bae"
received particular attention (Ref. 2).

Mw present report deals with som aspects of the
e3qansion of random functions into orthogonal series.
Consideration Is also given to how to broaden the spectrum
of a single-tone msmal by modulation of 'various sorts.
Some attention Is also given to optiml approximtioms of
various statistical characteris tics of actual random noise
fields.

Ninm=criLpt released by author October 7, 1964, for publication as
an RTrD TecbniLcal Docntary Report.
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II. Representation of Acoustic Noise Fields

a) Orthogonal Epansion of Random Functions

It is desired to represent a randomly varying sound
pressure p(t) (see rigure 1) as a series of orthogonalfunctions vith orthogonal random variables as coefficients.

Figure 1. Typical Recording of Rundom Sound Field

In particular, ve require

p(t) -z l W(t) x
n n nn

[ n-kE(XnXk) 8 nk 0 n k

o ' :(2)
t(t)** (t)dt -

(2

To achieve these results, consider

n) X'As 1*s(t )*('*,(t') X*Xk
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Integrating both sides of this result from t. 0 to T and usng

the second of (2), v find

"Z II I,11*8(t) x.x
Sn

TakIng expection and using the first of (2) gives

(t .tl )*,n t, ldt, A-I12 * I M

ot< T ()

R(t,t') - Z(p(t) p(t,))

ftum e can bay such an expansion as (2) provided a_(t) are
solutions of (3) and A is the eigwnvaue associated vith

n M.

Frm(1) and (2) it follovs that

X- Tn(t ) p(t)dt )

n

Therefore if e know the eigenfunctiom s n(t), and the

eigenvaltu A_, and possessed a realizedn lue of p(t),
ye could calcuate the realized values of the orthogonal
random variablesX . All tb" Is needed to find X and

* (t) is the satorArrelation function R( t,t'). MAs is
ether given or Is determined frm an actvl recording

of p(t).

if p(t) Is a gaussian random process, the random
variables w ill not only be orthogonal but vill be
indee~trdom variables with a noral probability

distribution. The problem of determining the probability

distribution function for p(t) when those of X mg,
Is an extremely difficult one and bs been solved only in

the case of gausslan varlates. It is to be noted from (t)

that if p(t) is an i,ependent process, will be a
normal varlate. one can easily prove this by application

of the central lUnit theore of probability theory.



b) Fourier ftes ion of Random Functions

Because of the difficulty of solting the integral equation
(3) and because of simplicity, random functions are expanded
into Fourier series in most practical situations. Unfortunately,
the random coefficients are not orthogonal on (0,T) except for
periodic processes. We can show, however, that the coefficients
are asymptotically orthogonal as the length of the recording
increases.

Consider a stationary random function p(t) defined on the
interval (O,T). The Fourier expansion of this process on (0,T)
is

a

p(t). c os wkt + bk sin utJ, k h (k)
kwo

where

a 0 aTP(t)dt, T M -0 0

2 Tak - f p(t) coo kwt dtk -1,2,...
0

2 T
bk - p(t) sin kw t dtk-1,2,...

00

Now

E(ak,~) = Eoo_p(t)p(t) cos ko t cos w 0t'dtdt')
0 0

" 11 R(t-t') corn kw t coo Jw ttdtdt'
0 0

- R(Tr) coo kw t cos Aw t'dtdt'

0 0

' - t-t'

Cbsning variables the double Integral becmes

Vae) t coo wtdt t R(r) coo Aw (h

Let A - t/T, then

4~



I L T(1-).
(Slo 4 R T2(V) ds-2F

T

As Ti-, A 0

f1 2ik) Aae As {'k5' -. C,o. e T)" (j
0

(7)
+ sin 2rA (0))

2uiJ

w spectral de aity of p(t) and w o 2 w 0 as? .T
unless Is chosen such that liz uA4 U 0.

J,T -),

(7) my be evaluated to give

{k,) -S(Wj) Bk (8)

The nomlised k= ' =

obey

mC kON --- 5T, jk . k,A> 1 (9)

In Like aner one can show that

EI{ li) -,#o
llkS -. 0 ,k

kAk > 1 (10)

Tbus the expansion coefficients ae asymptotically ortbogmal.

5



It is of value to compare various Fourier expansions for
different lengths of T of recordings of p(t) with the emct
orthogonal expansion on (O,T). Miis would give sow idea of
the length of record to be taken so that a Fourier expansion
would be as good as the exact one.

III. Solution of the Integral ;qustion Arsn In tbrhe gna

Expansion of a Pandon Function.

a) General Pesults for Processes ith ationa.l

Density Functions

We confine ourselves to stationary random sound fields vwoe
spectral densitY functions are rational functions of frequency.
In this case the integral equation becomes

To/ R(t-t,),* (tf)dt,. I 2 (t), O < t<T (3-)

By the Wiener-Khintchine tbeorem, we know that

R(T) S() e *d

S(W) j" R(.r) e Td,,

S(w) is the power spectral density of the rand sound pressure
p(t). We nov suppose that S(w) Is a rationl function of w so
that it can be written as the ratio of two polynomials in w,
namely,

s() = 2
D ((iw) 2

D Is at least one degree greater tban I. fthe argiment of the
N and D polynomials ms chosen as a squ e of w because of the
gneral requirements placed on S(w) as a power spectral density
function. We ish to show that when the process bas such a
spectral density as (13), the functions *n(t) satisfy a liner
constant coefficient differential equation.

We start by inserting (13) into (3) to obtain

6



/'F'l(i"2) eLt-t' )
__ot~._ i (- ) " , ( t ' ) dw d t ' - I 2 1 ( t J ( i )

Let q/2

N((iL)2) Z bk (N)2k

kno
p/2 p>q ( )D((1,) 2 )  L (:w 2k1 )

kand bk ae cowtants. lov operate upon both sides of (14)
th the operator

kmO

1 y i ) D((lw) 2)e i(t, )* n(t,)dtdw

2

2( m D( d 7 t)iv

dt

Iftltiplying by N( (iiw) 2) under the IntegralfI is equivalent to
operating on the Integm vith N(-s " M (16) em be
vritten as

1 T 2EN d-7)1. e• tt)wdw] ,ntt)dtf

0 d2  
(17)

'An =dC -*)nt)

But

ei(t t')du - 2v b(t-t,)

-w(8



vbere b(t-t') is the Dirac delts function. Using (18) in (17),
we find

2 I I 2
RE- b(t,D- ) *n(

or
2  2

NI.7) *(t) - IW1V D( } *(t) (19)

This is the basic differential equation that must be satisfied

by the expansion functions j n(t).

The solution of (19) vill contain X and p arbitrary

constants Ak. Wan $his "ation is sbstituted back in the

integral e#ation (31), it vill be seen that the integral equation

cannot be satisfied except for certain values of Xn the

characteristic values, and the constants Ank must atisfy certain

conditions. These conditions show that for each n there is only

one ndent constant. Mis one constant is to be determined

from the normalizing conditions on n(t), nawly,

(t) (t)dt - ( 1 nM (20)

The procedure Just outlined vill now be carried out explicitly.

The differential equation (19) becomes

q/2 d2 k# p/2 2k
2b k n(t) I d 1 2  d 2*n (t) (21)

k dt k 7k dt2
kw,O k,,O

Try a solution

*n(t) -A ant (22)

A is a constant and a is a parameter. Putting (22) in (21)

we find that a must be a root of
n



q/2 p/2

IX b ? 12' kW

kwo

zdi equation win have, in guieral (special situatlons can be
taken cr ofx)proots k = .. p .
of the roots are simply the negat-veJ the other balf. A
general solution of (21) Is tben

p/2
W(t - [A eQnkt + A- e-"nkt) (24)n hk

kwl

The autocorrelation function Is given by

ni) 1_ ((il) 2 ) eirwa
R(-r) ((g) 2 ) (95)

This integral can be evaluated by contour integration using
semicircular arcs and yields

p/2

X Bk e k - t -t ' ) Q

kml

R(pr) p/2 (26)

k are the roots of

D((iw) 2 0 (27)

lying in the upper half of the complex plane an shown in
Figure 2



(A)- PLANE

R

X 0 A

Figure 2. Loation of the Roots 
of D((iw) )

There are p roots of (27) + wk, k - l,..., p/2. The

Bk are given by

N((iwk)
2)

B -m dD((iw) 2  (28)

d i.2)

Inserting (24) and (26) into (3.), e obt. n

p/2 p/2

-1(t-t')Z +eankt+ A, }t dt'

p/2

10



C&rrYing out the Integrations we obtain

BS egit e.A K an t

3,A nkt

) BAk.a+. e'LAl

LV~ n ui lw$ 4 nka i

ut _ nk - im sk
B4 A -u t'4 5 ~- 1

A ank + 'kus

0(-ankt+*lws)t

_a ~ ~ n nk+i

BA e nk

MUequaton eoa be sat iefled ident ically in t on. jr the

Nmof the coefficients of the diff*ent ftu1Lms of taie
ame equated to zero. Thi gjyes the S"tga

(- __ + A .-

i nk -lu +1 uk-ws

Z +e(Unk + 4*)T A , e(-Uk+ lus)T(b) Bc*  m an .+ ',a +. o% N

p/2 8 . lpq**$p/2 (29)

k lpo..,p/2

31



p/2

Alt ( - 1X1 A- k

50 ank a nk +I

Equations (294) and (29b) are a system of p linear
equations for the detexmination of the A6  and A * For a non-

trivial solution, the determinant of the coe sw mst vanish,

numely,

1 1 .... , -1 -1 .... .

1111 ni i 1 Di
'Dli Oij + +i0Mo,+i*

"nl -12 'IsiW1

(30)

0m "0

Oal -imp/2

(a + i )T ((Q +)T .O)T
+ n i 4(2!i - *iw

'In + .io. 11,+ 1 -as 1 "

From this equation we determine the eigenvalues Xn' n - 1,2,...

This requires that we knw the functions

ank - fk(;k) (31)

These functions f (7) are determined by solving for the roots

of (23) In terms of R We can do this anaslyticall.y in term
of algebraic functione for equtions of fourth or lower degree.

This vould mean that problems could in principle be handled for

D((iw)2 ) of eighth or lower degrees.

12



Bqmations (29c) and (29d) will be found to be identically
satisfied. All cotmnts AIL. k - i, *. p/2-l. A;k, k - 1 ... ,
p/2 can be solved for In terms of A46/2 using equations (29a) and
(29b). A4 p/2 Is deterimined from the normalizing condition

*,(t)ir,(t)dt - 1 (32)

fe case vbem the power spectral density Is a rational
function of frequency is a very important one and covers a
wide range of practical cases.

b) Exaion, of Processes with Mmrkoff
Autocorrelation Functions

Suppose that the autocorrelation function of a stationary
random acoustic noise process p(t) of man zero is given by

I (p(t) p(t +T)) - R(r) - A •"PI'd

(33)
A- E s 2 (t)) - R(o), constant

This function is shovn in Figure 3.

R(r)'

0

Figure 3. Graph of the Autocorrelation Function Ae01-V

13



The spectral density corresponding to (33) is

S(W).fA -(,)2 02
-04

Mis function is plotted in Figure i

SMO4

0

Figure 4. Spectral Density Function of a Process with Mmxkoff
Autocorrelation Function

From (341 we see that the process under consideration has a
rational spectral density function with

N((iw) - 2 2 (35)
D)((Lw) 2 ) , -(:w!) 2 + A 2

The differential equation (19) becomes in this case

2N*(t) - IwnI[ I Lt n ] (36)
n n dt n

Let

2 (7)
n e ln 12

Then (36) ca be vritten a



d,2 (38)

Ir 02.Cf7 tben (38) bas solution

I(t) - a e n + b.o s ,w> 0. (

a and b are arbitza=7 constents. Substitutinag (33) inton n
the inteval equation (.1), ve find.

Afe0r T)At, +f -t*(t IN12 t,1 - t-tl

A, e ntet' + ' A t e0't
Using (39) and =aWrIM out the integrations gives

A - + Ab - +

n n

00(t-T) + iwnTef(-) Wa eJAh+ A& + Ab " -n + iw n
n n

IN12 .ei%t + IN 12 be.-I%t

M%U equation is identically satisfled In t if

As A&n n 2

IN I
e+ i" + 1w -I n

Ab n AbI
-- I-0 -i2 n

n n
IIIIII I3.5



-As Ab
n n

(-0+ iw )T
A& n Abe n

U 
n

n n

Me first two conditions in (40) ame identically satisfied. The
second two are two linear equations for a andb n
For a nontrivial solution, we require

1 1

-0 (lii)
+ iw )T +__ i"___

+ I1w p13 wn n

This reduces to

w co1w w)T -+(in T )
n 2 n 2 n

(-2)

w n + 32

Equation (1.2) determines the eigenvalues A . It is clearly
a complicated equation and must be solved nierically.

From (1.0)

b n M a a (J&3)
+ iw

Therefore

16



*n(t) - 'a nt

-~~~ +w C05tsin wt)

Frmthe nozLwlizing conditica we find

I& ,!2 Ip J+ I (I I'm coswt+jssinwtj dt) (1.5)

%~e orthogonal e2pmsicu of p(t) now takes the form

pMt nz a,-- (w., coswt + jsin wt) X (406
nal a

The X -m caly be determined vhen a real Ised value of p(t)
Iginen. Mxis in principle cempletes the problem.

c) Other Methods for Sovn the Nugm quation

Another method of solving the integral equation (11) much
used by pbysicists is to expand the kernel R(t-tf) into a suit-
able Set of orthornoml functions. By this memos the problem
can be reduced to the Problem of firnding the non-zero roots of
an Infinite deterainant. By judicious choice of the expansion
this process can be aade tractable. (Bef. )

d) Other Solutions

1. S*lnr Bond Uimited Gaussian White Noise of
MenZero t(nsf. .)

fte expansion Interval in -a < t <. The autocorrelation
function for the process is

-c (,<2> sin ' P T a t-tt'47

and Is shown in Figure 90

17



(pZ)

Figure 5. Autocorrelation Fmction of Damd Limited White Noise

B - w- w1 is the bandwdth of the noise. fthe spectral density
&PPMer as in rigure 6.

S(0

-So

" -U." 0 U, uJ

Figure 6. sp"tftl Density of Band Lnited White Noise

Note that <p2>-S B. fhe proper functions for the expamsion of
P(t) On the Anter4a (a,- are found to be

(,t) ,-' sin 2r(t - n/23) (48)
2wB(t - a/2B)

18



(* ) is an o set but #n are not solutions of 11. 11.

fte expansion 'tWws the afor

p(t) l -b1p(t X (49)

2*r3t n /5

vhere

X w 23 Ix~) pty a 25t-/23) dt (50)n

2. Bond Limite4 Stton Noisl White Noise on a

init, terval. (Ibf.6.)

M correlation fv=tion is still of the forA (i7), but the
expansion Is desired on the Internal (o,T). Ma proper futms
and eigenvols are

S(i)
8IB [WS, 21T(t-l)1

On

M. 2>c €, T( B. ) 12 (51)
n. an

#. 44 )Nn (an 1)2 2( +

R ns(e,y.) and 8 S (e, coo 0) are renpectively, the prolate

spberoidal Dessel fUnction and prol&te spberoidal I&6=4ft

f,mction as given by Morse and eshbach (Ibf. 5). nose

functios have been tabdIated. Me expansion reads

P(t) X,o

z (:e)

inn T p() *n(t)L



X are independent norml varlates of man zero.n

3. White Noise

Correlation and Spectral density functions are

R(i) - s0 (v)

s(W) - 0( )0

8 is a constant. The Integral equation in this case became

o

or So*.(t)- 'n2nt)

2his can be satisfied by any orthonomi set of functions if
Ve take A - %FS for all n. The expansion becomen o

p(t) -dS oZ*(t) Xn

x .n w -,S P; (t) n(t)dt(

The results for vhite noise are very interesting and
potentially very useful. We can make the general statement
that very broad band random signals can alvays be approxitely
expanded into orthogonal series using any suitable set of
orthonorml functions.

IV. Methods of AppE21jetjM Acoustic Noise Fields

a) Optiml Approximation Techniques

Once A and *_(t) are determined from solving the integral
equation, R can e obtained when a typical recording p(t) is
av -We get a set of realized values for the X . The

series b__ (t) - p(t) is then an analytic representation of
the realized ncton p(t). The sirens could be used to try
to simulate this series or the typical recording.

20



In nmral, vhen e hav am analytic expression for p(t), we
need a synthesis procedure to apINC-atoe p(t) ith the sirens.
We might try to wSprourimte p(t) itself In the time domin by
requiring the mean square difference between the sirens' output

X Pk(t) mud p(t) to be a ainimum. 93is requirement Is acIdeved
by m1nimizing

k

with respect to the adjintbble parmeters of the sirens such as
center p etncies, aplitude of outputs, percent nodulAtion etc.
Lot \ikJbe a parameter of the kth siren, then this synthesis

procedure requires

TN
T__ 2 k - 1,2.. N
p(t) P(t)]2t - 0 (56)

N in the number of sirens and Iis the number of adjustable
parameters of the kth siren. ( 6) leads to a system of equations
for the optimizing paraeters. Unfortutely, the sstem is
nonlinear in the pwameters in almost all cases and it is difficult
to solve even with digital compute s. ere ve try to opt1ma.1y
synthesize one realized value of p(t). Since p(t) is a sample
function from a randam process, it w4y be better to aprouite
some statistical characteristics of the proess.

Other synthesis criteria might be:

1. Minimize man square difference between poaer spectral

density of p(t) and that ofZ Pk(t) "

2. Optimize probability density of p(t).

1 T 23. Minimize4 T P(t) " ko Pk(t)] dt)

with respect to the paraeters of the sirens. We assume here that
soe of the parameters of sirens are random In character.

b) Spect e of a S l-Tne Siren.

21



Spectral broadening of a single-tone siren can be achieved
by various form of ation or by switcbin techniques. Iet
us consider first spectral broadening by modulation.

1. Amplitude Modulation (Deterministic)

A single-tone siren output my be represented by

p(t) -A coo (wet + 1) (7)

vhere A is the aplitude of the output, w Is the center fre-
quency of the siren, and qis a pbase angle. Such a siren output
as (57) contains only ome spectral component. Suppose by some
means ve are able to vary A as a function of time. In particular,
let

A a A(t) - Ao(1 +ecoo swt) (58)

AO, Ap and w are constants

2hn (57) reads

p(t) - A (1 + A cos st) cos (wet +y) (59)
0a

or
1

p(t) A cos(t + q) + ! a coo [(w +m)t + ]+

1 (60)
+1 ACos [(e - ) t+I]

2 ' o a

]By this modulation, ve see that p(t) nov has three spectral
components. It is easy to see that if

N

p(t) - A z (1 A4 cogn wakt) coo (et +) (61)

k=l

p(t) vill have 21 + 1 spectral camponnts. Bquation (61) inclu4es
a vide variety of emplitd e modulation such as arbitrary periodic
modulation and almost periodic modulation. We note, hovever, that
as long as A(t) is a deterministic function of time the spectrum
Is discrete.

22



2.- PW n. Jb&UltiOR (BsUreaulaic)

mW ietoem angular frotmoey is defined"a

vinre the phame angle q Is nuw cousiderod a fAmction of time.
If o vry he reuency by uinagle tome, te siren Output

takes the form

p(t) * A cos[ t +4 sin u t] (63)

A and u are constants
a

It is well known tbut this can be written Ln th form

1 
4p(Q~ A coevt 2 0 1+(la J( 4m( m)20 a

+ come(a -ma"tW
c a

from v2ich we see that there are an infinmite muber of discrete
spectval camponents. JA is the 20"0l function Of the first
kind of order a. Mwe asem p raw*e Of the IntmiVit spectra
of P(t) for "0all, intermediate, and large values of A /w ar
shown In Figure 7with their enmelopes.

7-

I'

FigAre 7. Intensity Spectra of a Slagle-Tom IN Acutic Noise Pressure
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For aztitra-7 periodic or almost periodic frequency modulation,

the siren output is given by

N

p(t).A 0 co (wct+ sin W.t) (60,)

kal.

Aand nkame constants.

The number of sidebands increases tremendously s I increases,

but the intensity spectrum Is still discrete. 021Y for an

aperiodic modulating e can we obtain a continuous intensity

spectrm or spectral density.

Appliafton (Rdma)

Omtius spectal broadening of a single-tone siren can be

achieved throug rando nodulation. Consider

p(t) =A [1 + A P (t)] am, -t (66)

vhere P (t) is a stationary normal random process and A, A,, and

w am constants. I spectral density of p(t) for a modulating

S ie vth spectral densit fvmction given by

(67)

5 and % = constants

in shown in Figure 8 for various modulation indices.

It is seen that spectral boradening can be quite considerable.

Note that finite energy is in the carrier for all modulation indices

shown.

.) e cy modulation (ftaom)

In this case we have

p(t) - A cos(wt + P(t)] (68)
0 c M,

vhere P (t) is a stationary norml rand=u process.* A and w are
W 0 c

con%M. The spectrum of p(t) for P (t) taken to have spectral
donsity



3+ 2 2 L~(p ) (69)

la shoun ln Figuv 9 for variLo= coaUtioms. 3 is the band-
vidth of the noUse IP~~s now louam Val=e 19iAW&:n

N



u .i) Wc

2 P .~ (,p , > j' ~ -f NORMALIZATION

- - ~FACTOR F

.8 
0a

0.0 0.25 2.16

1 2.0 0.50 1.62
-/3 0.75 1.32
1.0 1.001.6
2/3 1.50 1.032
0.5 2.00 1.oo10

1/3 3.00 1.0000

.4 - - z,,,:

.2-

.5 1.0 1.5 2.0 2.5

igur-e 8. Spectral Deunsity of Noise Vox2ulsted
Single-Tone Siren
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If P < < 1, the spectral density Is very narro about w

(3ittle broadening). For very Il values of I, the

spectral density is bread about * .

5.) Sp Bandom 8wit,bIM

Consider a stationry noise pressure of the type shown in

Figure 10.

N(t)

0 to t, t3 t4 16 t

Figure le. madom Sqre WAVe

fe zero crossings occur at purely random Instants t ,t , .....

Such an output vould be produced (except for a crrirer "

cos w t) by an ideal siren tat us being swite od an and off

at purely rando tims. Mwe spectral density function of the

pressure in Figure 10 is

8(W.) . A (70)

when tl+3-*t is a Poisson distributed radowm variable.
If ve use I(t) as an =iplitude moda'stion function of a single-

tone siren output, we hbe the sound pressure

P(t) - 1(t) coo tut + (] (71)

I s a radom phose uniforaLly distributed between o and 2y.

fte autocorrelation function of p(t) is

98



-a (N(t) coo[t + p] P N(t + j) cog [(t + )+ ,l) (72)

R EI(N(t) N(t + 12)p

). 2 RN (.) cog er

5e SP tml desiitY is obtLmd by =e of tim ildmr-Kintehlm
thorem. We find

s (.) _f .- (.-w),

Ce, c + •" 4" "g'0 )'r) Jt (r)' (73)

e( (w)

(-N(Oce- ) + SN(w + we)
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V. Conclusiomp and Bee -dtin for Further, St4

2e energy of a single-tone siren can be spread over a fair y

large frequency bend about the center frequncy of the siren by

various sorts of modulation. 2he most effective vy of spreading

the sound energy over the frequency band is by random amplitude

or frequency modulation.

A given acoustic noise field my be approx ted (in spectral

density) by centering the sirens' center frequency at those vhich

constitute the given signal or by dividing the spectral density

of the given signal Into equ l energy bends and assi In en energy

band to each siren. Mw approximation can be improved by amplitude

and frequency modulating each siren. Approximation of a given

acoustic noise field in some optiml vay leads to the solution

of a system of non-linear equations.

Further work my be carried out to find other solutions to

the integ al equation occurring in the Karhuaen-Lose expansion

of the random noise field. It would be particularly desirable

to find some ezact solution so th]t the proper expanions could

be compared with a Fourier expansion of the field. Another

direction in vhich a continued investigation might bear fruit is

that oftqf otdevise methods of solving the nonlinear equations

aising In trying to optimaly approximte sam characteristic of

the given acoustic noise field with the sirens. Still another

area vorth looking into further is spectral broadening by randami-

zation of the sirens' Parameters.
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